Deloitte.

Available at: https://www.hydrogen4eu.com

Dr. Manuel Villavicencio Economic Advisory — Deloitte France

Reaching net-zero emissions in the EU by 2050 is a formidable challenge

The European Union has reduced its carbon emissions during the last decade but the path towards net-zero requires a step change in efforts

Integrated energy system for the Net-Zero target

The design of the Hydrogen for Europe study in a nutshell

Hydrogen for Europe is a new research study that comprehensively looks at the European energy system to assess the role of hydrogen in the energy transition.

Addressed issues

- How can renewable and low-carbon hydrogen contribute to the energy transition?
- What decisions and pathways help to bring down the technology cost?
- What is needed at **policy** and regulatory level?

The study rests on a quantitative analysis, relying on three models and their interaction: MIRET, Integrate Europe and HyPE.

Led by Deloitte, research centers SINTEF and IFPEN implemented an innovative and original modelling approach

Two main pathways are analysed:

Technology Diversification pathway

→ Illustrates how an inclusive approach helps minimize the cost of the transition

Renewable Push pathway

→ Shows the implications of a deliberate focus on renewables

Both are aligned with key EU policy goals:

 55% reduction in GHG by 2030,

3

Net-zero by 2050

The primary energy mix is fundamentally reshaped in the two pathways

Evolution of primary energy demand in Europe

- x3.5 in 30 years
- Meets almost half of primary energy by 2050

- 32% share by 2050
- Resilient during the transition

- Dwindling role of coal and oil
- **3**% share by 2050

Electricity and hydrogen combine forces to decarbonise energy end-use

Hydrogen key for decarbonizing hard-to-abate sectors

~ 100 million tonnes of H₂ consumed by 2050

Diversity and complementarity between hydrogen supply options

Zooming in on CO₂ emissions and the net-zero objective

Some 400 Mt of CO₂ are removed in 2050

In some applications the cost of full decarbonization is grater than compensating emissions with CO2 removal.

Carbon capture and storage technology is indispensable:

- Unlock the potential of low-carbon solutions
- **Enabling negative emissions**

Investment, investment, investment...

Trillions of euros are needed in both scenarios to finance the hydrogen value chain.

Temporality and level of necessary investment differ between the scenarios: more money needs to be mobilized earlier in the Renewable Push pathway

3.1 trillion euros Technology Diversification

Key insights from the modelling for energy policy-making

The Technology Diversification pathway offers to European society several advantages that policy-makers should trade-off against other criteria

Five main guidelines to inform the design of next policy packages and measures

Internalising CO₂ emissions and changing the economics in favour of clean technologies

Accounting for CO₂ content of energy use

Fostering innovation and R&D and bringing new technologies to commercial viability

Enabling low-cost financing and bankability of investments in low-carbon and renewable solutions

Ensure system integration and coordinate supply and demand uptake

Thanks for your attention

Dr. Manuel Villavicencio

mvillavicencio@deloitte.fr