

SJWS#2 – 26 January 2016

SJWS#2 – Part 2

Introduction to modelling

ENTSOG Sysem Development Area

Image Courtesy of Thyssengas

Overview of the modelling

TYNDP is based on a simulation tool consisting in several important blocks

- > The input data
- > The topology
- > The algorithm

What does it deliver?

- > The tool is run for different simulation cases
- > As a result it provides a number of outputs

Modelling – the topology

The topology

- > A nodes / arcs topology representing the EU+ gas system at balancing zone level
- > Nodes: information attached corresponds to
 - Demand: 1 node per country or balancing zone
 - National indigenous production
 - Supply potential and prices (for import points nodes)
 - Additional topology nodes when required, for example to reflect specific network contraints
- > Arcs: existing and planned capacities
- > ENTSOG continuously improves the topology to ensure the most accurate representation of the gas system

Modelling – the algorithm

The algorithm

- > The objective function:
 - Ensure the EU demand/supply balance, at the lowest cost
 - The solution has to satisfy demand and to respect arc capacities and supply limits (min/max): these are hard constraints
 - The chosen solution is the one minimising the cost, based on supply prices mainly*
- > This is a classical minimum cost network flow programming problem:
 - Use of Jensen solver** (open source)

- > (*) But also arc costs implemented for modelling reasons
- > (**) Jensen solver: developed by Paul Jensen for the Texas University in Austin (<u>https://www.me.utexas.edu/~jensen/ORMM/index.html</u>)

Outputs will be detailed in a later SJWS

States of the world

			Infrastruct	ure Levels				
emand Scenarios		Low Infrastructure Level	Mature Infrastructure Level	High Infrastructure Level	PCI Infrastructure Level			
	Green Revolution	2017, 2020, 2025, 2030, 2035	2017, 2020, 2025, 2030, 2035	2017, 2020, 2025, 2030, 2035	2017, 2020, 2025, 2030, 2035 🖕	Time		
	Blue Transition	2017, 2020, 2025, 2030, 2035	2017, 2020, 2025, 2030, 2035	2017, 2020, 2025, 2030, 2035	2017, 2020, 2025, 2030, 2035	Snapshot		
	Slow Progression	2017, 2020, 2025, 2030, 2035	2017, 2020, 2025, 2030, 2035	2017, 2020, 2025, 2030, 2035	2017, 2020, 2025, 2030, 2035			
Å		<u>у</u>						

Demand Scenarios may not all be assessed in the TYNDP. Decision will be taken at a later stage.

TYNDP 2015 basis

			Simulation cases																
	Name	Granularity	Period	Supply stress	Price configurations														
Outputs	EU Bill	EU	Year	None	utral	cheap	NG nsive	heap	oensive	heap	oensive	heap	oensive	heap	pensive	heap	oensive		
	Marginal Price	country/BZ	Year (Summer and Winter)					ING	expe	RUo	RU ex	NOG	NO ext	DZ G	DZ exp	۲۲°	LY exp	AZ o	AZ ex
	SSPDi	country/BZ	Year			LNG cheap (flat)		RU cheap (flat)		NO cheap (flat)		DZ cheap (flat)		LY cheap (flat)		AZ cheap (flat)			
	SSPDe	country/BZ	Year				LNG exp. (flat)		RU exp. (flat)		NO exp. (flat)		DZ exp. (flat)		LY exp. (flat)		AZ exp. (flat)		
	USSD / CSSD	country/BZ	Year	LNG RU Supply NO disruption DZ LY AZ	Neutral										_				
	Disrupted Quantity / Disrupted Rate / Rem. Flexibility	country/BZ	Design Case 2-week cold spell	None Ukraine Belarus Franpipe Route Langeled disruption Transmed MEG Green Stream TANAP	Neutral														

For TYNDP 2017, focus on less simulation cases will be considered

Inputs to the modelling

Inputs: capacities

Capacities on the arcs are based on

- > Existing capacities, collected from TSOs
- > Planned capacities developed by the projects submitted to TYNDP
- > Transmission capacities are submitted by TSOs based on their expertise regarding hydraulic behaviour of their network

Depending on which Infrastructure Level is simulated the simulation will consider the capacities of the corresponding projects

Inputs: demand

Gas demand is a <u>fixed input</u> of the simulation

- > The demand data is at country level (or balancing zone level for multi-zones countries)
- > The demand data depend on the **demand scenario** and on the **simulation case**
 - Whole year case: composed of an average summer (7-m) and an average winter (5-m)
 - Design case peak day
 - 2-week cold spell: demand reached on 14 consecutive days once every twenty years (average daily demand)
- > Demand data are provided by TSOs, based on ENTSO-E data for gas for power generation
 - These are TSOs estimations elaborated in line with each demand scenario's story line
- > The demand data is the aggregation of
 - Final gas demand (residential, industrial and commercial usage)
 - Gas demand for power generation

entsog

Inputs: supplies

Indigenous production

- > The data is collected from TSOs whose systems have an upstream connection to indigenous production
- > A distinction is made between
 - Existing national production
 - Non yet developed (non-FID) national production
 - Additional conventional production under consideration (e.g. Black Sea)
 - Potential for biomethane
 - Potential for shale gas

Supplies

- Data are collected from external sources and are used to define minimum and maximum supply potentials
- Supply potentials serve to define the [Min – Max] supply range for the modelling

Modelling of LNG terminal and storages

Modelling of LNG terminal

Modelling of LNG terminals

- > Data collected: send-out capacity, LNG stocks kept in tanks for specific events
- > Terminals are connected to the LNG source
- > Over the whole year simulation: regasification level capped to 80% of the send-out capacity
- > Design case (Peak day): regasification level up to 100% of the send-out capacity
- > 2-week cold spell: modelling refined from TYNDP 2015 based on a GLE proposal
 - Regasification level can go up to 100% of the send-out capacity, but terminal behaviour distinguished between 1st and 2nd week
 - 1st week: no additional cargos compared to winter simulation (winter emissions set a cap), but regasification level can be increased using LNG stocks in tanks
 - 2nd week: additional cargos can support the regasification level

> A technical minimum regasification level is considered: a % of the send-out capacity

Modelling of storages

Modelling of storages

- > Data collected: working gas volume, entry and exit capacities, withdrawal deliverability curve
- > Over the whole year simulation (volume perspective)

Historical use of storages and ending level (Source AGSI)

Modelling of storages

Modelling of storages

- > High demand situations
 - Design Case (peak day) considered on 31st January
 - 2-week cold spell considered on 2nd half of February

Deliverability curves are computed at country (or balancing zone) level

More on modelling

Modelling assumptions

Perfect market functioning

- > That is: free flow of gas and wholesale price equal to the marginal price
- > This may not reflect the current situation, but aims at identifying investment gaps that would still be there after the implementation of « software » solutions (full implementation of the Third Package,...)

No consideration of infrastructure tariffs

- > To avoid identifying investment needs that would serve to by-pass high tariffs, where it could be handled through « software » solutions
- > Additionally
 - Tariff of existing capacities may evolve, and are not set for planned infrastructures
 - Costs of planned projects are considered independently in the cost part of the CBA
 - Infrastructure costs will have to be recovered, even in case infrastructure use is arbitraged based on tariffs

Infrastructure costs

- > They are introduced for modelling purpose
- > They are kept are at a very low value << 1 EUR/MWh

Modelling of arcs

- > Multiple arcs: to force the model to choose a balanced flow solution, all the arcs are splited
 - with splitted capacities matching the arc total capacity
 - with incremental costs

Example with costs in EUR/GWh

Thank You for Your Attention

Céline Heidrecheid Adviser, System Development

ENTSOG -- European Network of Transmission System Operators for Gas Avenue de Cortenbergh 100, B-1000 Brussels

EML: <u>Celine.heidrecheid@entsog.eu</u>, stefan.greulich@entsog.eu WWW: <u>www.entsog.eu</u>