1

ENTSOG Configuration Management Approach

2

Version 0 Revision 0 – 2017-12-12
Disclaimer

This document only provides specific technical information given for indicative purposes only and, as such, it is subject to further modifications. The information contained in the document is non-exhaustive and non-contractual in nature.

No warranty is given by ENTSOG in respect of any information so provided, including its further modifications. ENTSOG shall not be liable for any costs, damages and/or other losses that are suffered or incurred by any third party in consequence of any use of -or reliance on- the information hereby provided.
Table of contents

1 Introduction.. 4
2 Required Features .. 5
3 Data Exchange Parameters ... 7
 3.1 Party Parameters... 8
 3.2 (Sub) Profile Parameters ... 8
 3.3 Network and Network Security Parameters .. 10
 3.4 Certificate Sets .. 11
 3.5 Business Process Relations .. 12
 3.6 Agreement Parameters .. 12
 3.7 Delegation .. 13
4 Structured Export ... 14
 4.1 CPPA3 Profile ... 15
 4.2 Profile Export ... 15
 4.3 Agreement Export .. 15
 4.4 Delegation Export ... 15
 4.5 Network and Network Security Export .. 16
5 CPPA3 Usage Profile ... 16
 5.1 CPP and CPA ... 16
 5.2 Party Information .. 17
 5.3 Service Specification ... 18
 5.4 PayloadProfile .. 19
 5.5 ebMS3Channel .. 19
 5.6 HTTPTransport .. 20
 5.7 Delegation .. 21
6 Revision History ... 22
7 References ... 23
1 Introduction

ENTSOG has produced a number of usage profiles [AS4UP, WSUP, INTUP] to support the implementation of the common data exchange solutions defined in the Network Code on Interoperability and Data Exchange [CR2015/703]. AS4, which is used for document-based data exchange, and SOAP/HTTPS, which is used for integrated exchange, support machine-to-machine exchange of structured information. To use these solutions successfully, TSOs and their counterparties need to configure various communication parameters in their communication products. Many of these parameters are pre-defined in the ENTSOG specifications and can be inferred by referencing the applicable specification version, but others are unique to specific parties and counterparties, and therefore need to be exchanged and configured between parties.

While it is possible to exchange communication configuration parameters bilaterally, this is inefficient and, if manual effort is involved, error-prone. Stakeholders in the gas sector have identified the need for a secure collaboration platform that allows parties to share and agree on such parameters, and to retrieve parameter sets in a structured format that can be imported or applied (semi-)automatically. The main identified benefits of the platform relate to setting up configurations for new parties and/or new services, where many parameters need to be set. The platform would therefore complement and serve a purpose different from the ebCore Agreement Update feature, which supports updates of existing configurations.

This document provides the following:

- An overview of requirements and key features that a central configuration portal should address. This is done in section 2. The exchange platform should allow parties to securely self-manage their parameter values, to selectively share these values with counterparties and to link profiles to agreements.
- A specification of a set of data elements for data exchange configuration parameters. This is discussed in section 3, which groups and defines the various parameters.
- A specification of functionality to export partner profiles and agreements. The exchange platform should allow parties to download parameters in structured formats. Vendors or systems integrators may use this functionality to (semi-)automatically configure communication. This is discussed in section 4.
- A specification of a Usage Profile of a draft standard, ebCore CPPA3, that can be used in the export function. This is done in section 5.

ENTSOG does not currently intend to develop or host this platform, but encourages its stakeholders, and stakeholder communities such as EASEE-gas, to develop and operate such a platform.
2 Required Features

The collaboration platform is to allow gas sector parties to maintain, exchange and agree on communication configuration data securely. Since TSOs exchange data among themselves, but also with other market participants, the platform should be open to all relevant parties in the gas business. The platform is useful if its users can serve as “one stop shop” to configure configuration with all or the vast majority of their counterparties.

The collaboration platform needs a formal identification system for parties and therefore identifies parties using their EIC code, as issued by ENTSOG and other issuing agencies. EIC codes are unambiguous and used as party identifier header values in AS4 messaging.

The collaboration platform should allow parties to provide and maintain their configuration parameters themselves. A self-service model avoids unnecessary delays, puts those responsible for data and data quality in charge of managing that data, and minimizes the operational costs of the platform.

The collaboration platform should allow sharing data where needed, but limit unnecessary sharing where possible. Parties exchange data in support of business processes with counterparties. The platform should allow parties to specify who their counterparties are, i.e. who they send messages to and who they receive messages from. This information can then be used to control the visibility of the data in the platform: configuration data is only shared among parties who are each other’s counterparties, but otherwise confidential, and agreements can only be formed among counterparties.

By analogy to human-to-human communication, the collaboration platform is more like a social network (in which people can share selectively, self-organize in private groups) than to email (which offers ad hoc any-to-any data sharing but no controls on visibility and sharing, and no concept of a communication agreement). Market communication is based on party/counterparty relations. These relations are typically stable rather than ad hoc, but not fully static, as players still enter or leave the market and companies may reorganize.

The collaboration platform is most useful if it allows all relevant parameters to be maintained. This includes parameters specific to the party, the communication protocol profile parameters, network and network security configuration, certificate sets, business process relations, agreement parameters and delegation information. A full overview and categorization of data exchange parameters is provided in section 3.

The platform should be able to support the full lifecycle or data communication. Companies periodically update their communication services and configuration parameters change accordingly. They may take on new roles, and outsource others. Companies also have other environments than their production systems, and need counterparty data to configure each of them, and need to be able to indicate in which intervals environments and configuration sets are valid.
The data that is managed in the collaboration platform is used in communication and networking systems. Since the data is structured and even minor errors can cause communication failures, it is important that the data can be exported (or downloaded) in a (or in a selection of) structured electronic format(s). This is further addressed in section 4.

The platform can only be trusted if its operation is secure, all access to and use of its services is authenticated and authorized and all operations are logged and monitored. Each company registered to the platform should be able to manage which employees can use the platform on its behalf, and which operations they can perform.
3 Data Exchange Parameters

The ENTSOG data exchange specifications describe the use of data exchange solutions for various types of exchanges. These solutions are parameterized, meaning they need to be provided with configuration parameters to function appropriately. This section provides an overview and basic set of configuration data elements. The elements are grouped to support common reuse patterns:

- Party parameters
- (Sub) Profile parameters
- Networking and Network security parameters.
- Certificate sets.

The grouping provides support and flexibility for real-life data exchange situations and covers all parameters needed for the ENTSOG document-based and integrated exchanges.

Examples of some supported situations, not exclusive of others, are:

- A party has a “test” and a “production” environment for document-based exchange. This is handled as two (sub) profiles, with different endpoints hosted on different servers with different IP addresses and possibly different certificate sets.

- A party has two “production” environments for document-based exchange that are the same except that the first expires a month after the second is activated and that the they are linked to different certificate sets. This can occur during a certificate switch period.

- A party has a “production” environment for document-based AS4 exchange and another “production” environment for integrated data exchange profile B.

- A party has two (sub) profiles that are both for the “test” environment. One is the regular test environment; the other is being used to test a new vendor product that the party will migrate to.

Parameters that have fixed values defined in the ENTSOG specifications are not covered in this overview. Instead, each (sub) profile is labelled with the type and version of applied data exchange solution. When configuring a generic, off-the-shelf communication system (i.e. not an ad hoc solution for an ENTSOG profile), users therefore need to combine the data elements specified in this section and the preconfigured values.

Note that a secure configuration exchange platform will need to manage other data, for example administrative data and authorizations, to support its own operation and use. This section only covers the data elements to be used to configure exchanges following the ENTSOG data exchange specifications.
This version of this document is focussed on document-based exchange. In principle, the approach could be extended to integrated and interactive exchange, though details and technologies used would be different.

3.1 Party Parameters

Party parameters provide information about a TSO or other company that is independent of data exchange solution.

This group also includes contact information which obviously is not directly used in a communication system, but can be useful in case of trouble-shooting.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Cardinality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Party Name</td>
<td>Name of the party</td>
<td>1</td>
</tr>
<tr>
<td>Party Identifier</td>
<td>EIC code of the party</td>
<td>1</td>
</tr>
<tr>
<td>Party Contact</td>
<td>A list of contacts for the party. Each contact has a type (e.g. “business contact”, “technical contact”) and one or multiple communication addresses. Each communication address has a type (e.g. email address, telephone number) and value.</td>
<td>1..n</td>
</tr>
<tr>
<td>Party Role</td>
<td>The role the party may perform, encoded as an EDIG@S code value.</td>
<td>1..n</td>
</tr>
<tr>
<td>Counter Party Identifier</td>
<td>A list of EIC codes of the counterparties of the party</td>
<td>1..n</td>
</tr>
</tbody>
</table>

3.2 (Sub) Profile Parameters

For each party, multiple party (sub) profiles may be defined. A (sub) profile is valid in an environment, uses a (version of a) data exchange solution on a URI, is valid in a certain interval, involves a set of certificates and has a network (security) configuration.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Cardinality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub Profile Identifier</td>
<td>An identifier for the sub-profile (only needed internally for cross references from agreements)</td>
<td>1</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Cardinality</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>Party Reference</td>
<td>Reference to party for which this is a sub-profile</td>
<td>1</td>
</tr>
<tr>
<td>Party Role</td>
<td>The role of the party for which this is a sub-profile. Must be one of the roles party may perform. If none specified, the sub profile applies to all roles that party may perform</td>
<td>0..n</td>
</tr>
<tr>
<td>Environment</td>
<td>The environment for which the sub profile provides values, e.g. “acceptance” versus “production”</td>
<td>1</td>
</tr>
<tr>
<td>Activation Date</td>
<td>Date and time from which the sub parameter set is valid</td>
<td>1</td>
</tr>
<tr>
<td>Expiration Date</td>
<td>Date and time until which the sub parameter set is valid</td>
<td>1</td>
</tr>
<tr>
<td>Data Exchange Solution</td>
<td>Indication which data exchange solution is used. Possible values are ENTSOG AS4, ENTSOG Integrated Data Exchange Profile A, B or C. Other values can be used for other solutions (e.g. legacy solutions, or solutions with NRA approval), such as EASEE-gas AS2.</td>
<td>1</td>
</tr>
<tr>
<td>Data Exchange Solution version</td>
<td>Optional protocol version, useful in case future incompatible changes are made. Current version for ENTSOG AS4 is 3.5.</td>
<td>0..1</td>
</tr>
<tr>
<td>Data Exchange Product</td>
<td>Vendor name and name and version of the product the solution is deployed on. Note: this element is for information only and parties are not required to disclose it. It may be useful for trouble shooting.</td>
<td>0..1</td>
</tr>
</tbody>
</table>
3.3 Network and Network Security Parameters

A sub profile may be constrained to be used with a set of network parameters and network security parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Cardinality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Security Parameter Set ID</td>
<td>Internal identifier for cross-referencing the network security parameter set</td>
<td>1</td>
</tr>
<tr>
<td>IPv4 supported</td>
<td>Boolean indicator that expresses if IPv4 may be used for communication</td>
<td>1</td>
</tr>
<tr>
<td>Client IP v4</td>
<td>IPv4 address or address range from which the endpoint initiates HTTP(S) connections Requires the IPv4 supported parameter to be true.</td>
<td>0..n</td>
</tr>
<tr>
<td>Server IP v4</td>
<td>IPv4 address or address range at which the endpoint accepts HTTP(S) connections Requires the IPv4 supported parameter to be true. A DNS “A” record MUST exist for the</td>
<td>0..n</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Cardinality</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>domain name use</td>
<td>domain name used in the Endpoint and must resolve to an address in this range.</td>
<td></td>
</tr>
<tr>
<td>IPv6 supported</td>
<td>Boolean indicator that expresses if IPv6 may be used for communication</td>
<td>1</td>
</tr>
<tr>
<td>Client IP v6</td>
<td>IPv6 address or address range from which the endpoint initiates HTTP(S) connections Requires the IPv6 supported parameter to be true.</td>
<td>0..n</td>
</tr>
<tr>
<td>Server IP v6</td>
<td>IPv6 address or address range at which the endpoint accepts HTTP(S) connections Requires the IPv6 supported parameter to be true. A DNS “AAAA” record MUST exist for the domain name used in the Endpoint and must resolve to an address in this range.</td>
<td>0..n</td>
</tr>
</tbody>
</table>

3.4 Certificate Sets

A reusable set of certificates, to be used in conjunction with one or multiple (sub) profiles.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Cardinality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificate Set ID</td>
<td>Internal identifier for cross-referencing the certificate set</td>
<td>1</td>
</tr>
<tr>
<td>Signing Certificate (Chain)</td>
<td>An ordered list containing the leaf signing certificate, any intermediate certificates and the Certification Authority certificate.</td>
<td>1</td>
</tr>
<tr>
<td>Encryption Certificate (Chain)</td>
<td>An ordered list containing the leaf encryption certificate, any intermediate certificates and the Certification Authority certificate.</td>
<td>1</td>
</tr>
<tr>
<td>Server Certificate (Chain)</td>
<td>An ordered list containing the TLS leaf</td>
<td>0..1</td>
</tr>
</tbody>
</table>
Parameter | Description | Cardinality
--- | --- | ---
server authentication certificate, any intermediate certificates and the Certification Authority certificate. | |
Client Certificate (Chain) | An ordered list containing the TLS leaf client authentication certificate, any intermediate certificates and the Certification Authority certificate. Note: TLS client authentication is allowed, but not recommended in ENTSOG data exchange solutions. | 0..1

3.5 Business Process Relations
Business process information is provided in the ENTSOG Service Action table [AS4MAP], which lists, for each pair of roles, the types of EDIG@S or other documents that can be exchanged between them. From that table, in combination with the information on roles performed by parties, the relevant AS4 parameters (Service, Action, From Role, To Role) and the EDIG@S Document Type can be inferred. By listing roles for parties, and listing counterparties for parties, all potential exchanges between parties can be computed. A potential future enhancement could be to allow parties to more precisely indicate which versions of which business processes they support, and the relevant (versions of) document types exchanged in these processes.

3.6 Agreement Parameters
ENTSOG AS4 uses the AS4 agreement concept and requires the AS4 agreement reference header to be present in AS4 messages. This allows its users to handle certificate switches in a much more flexible way than the previous AS4 practice. As both involved parties may have multiple different (sub) profiles, linking to distinct certificate sets, an agreement is a relation at the sub-profile layer rather than the party layer.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Cardinality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Party Sub Profile Reference</td>
<td>A reference to a sub-profile of a party</td>
<td>1</td>
</tr>
<tr>
<td>Counterparty Sub Profile Reference</td>
<td>A reference to a sub-profile of another party</td>
<td>1</td>
</tr>
</tbody>
</table>
Delegation

Where normally organizations operate a messaging gateway to send and receive messages to their counterparties, sometimes organizations do not create or receive messages themselves, but use third party service providers that send and receive messages on behalf of and for them. Two situations can be distinguished:

1. **Impersonation:** in this situation, the third party sends and receives messages to the counterparties of the customer using the identity of its customer. For configuration and the configuration exchange platform, this is not different from the usual situation. The profile configuration is still registered with the EIC code of the customer.

2. **Delegation:** in this situation there are no messaging profiles for the customer in the portal, but there are for their service providers. To allow counterparties to know that a party uses a service provider, so that they can configure messaging with that service provider, an explicit delegation table can be used.

The delegation relation has the following properties:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Cardinality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delegating Party Profile</td>
<td>Reference to a registered party</td>
<td>1</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Cardinality</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>Delegating Party Role</td>
<td>The role for which the party delegates communication</td>
<td>0..n</td>
</tr>
<tr>
<td>Delegated Party Profile</td>
<td>Reference to a registered party</td>
<td>1</td>
</tr>
<tr>
<td>Activation Date</td>
<td>Date and time from which the delegation is valid</td>
<td>0..1</td>
</tr>
<tr>
<td>Expiration Date</td>
<td>Date and time until which the delegation is valid</td>
<td>0..1</td>
</tr>
</tbody>
</table>

Note that the model makes it possible for parties to delegate processing for some roles but not for others. Also note that using multiple records with different activation/expiration dates, it is possible to describe a switch from one service provider to another, or to describe a outsourcing switch from an in-house solution to a service provider.

Delegation information is not messaging configuration information. Rather, it defines constraints on relations between sender and receiver identifiers at message layer and at business document layer, which can be validated in middleware or in business systems. All configuration data for the actual exchange with the delegated party is not included in the table. That data is instead provided as a (sub) profile of the delegated party. So, if party A wants to exchange data with a party B that delegate to a service provider X, A must configure an agreement with X. If A also outsources its data exchange to a service provider Y, then X and Y must have an agreement.

4 Structured Export

A collaboration platform in which parties can self-manage their configuration parameters and their relations with counter-parties is already a very useful first step. A next step is to allow configuration data to be exported into a structured XML format, which can be imported into communication software to set parameter sets efficiently. This eliminates manual data entry and avoids the associated potential data entry errors.

The OASIS ebCore draft CPPA3 XML schema [Error! Reference source not found.] and specification [Error! Reference source not found.] provide a standard mechanism to encode partner profile and agreement information for multiple communication protocols, including AS2 and AS4. It can be used as a vendor-independent intermediate format to export data managed in a secure configuration sharing environment into proprietary formats and interfaces of communication products.

In addition to exporting to a (draft) standard format, the secure central platform may also offer direct exports to proprietary formats.
4.1 CPPA3 Profile

The OASIS ebCore draft CPPA3 XML schema and specification provide a structured XML format for party profile and party agreement configuration. As is common with standard formats that are intended to be used in very different contexts, it offers many options and typically benefits from being profiled. Such profiling may cover both functionality to be implemented in products and conventions to be adopted by users.

For the secure gas configuration data exchange platform, a usage profile is provided in section 5. A proof-of-concept that illustrates the use of ebCore CPPA3 and that implements this usage profile is published as open source, under the MIT license, on the public Internet [AS4CPOC]. It includes sample code to generate CPP and CPA documents for parties.

4.2 Profile Export

A (Sub) Party parameter set, as described in section 3.2, can be exported together with referenced party information (see section 3.1), network and network security information (see section 3.3) and security sets (see section 3.4) as an ebCore CPPA3 CPP document. A CPP can capture all relevant information for AS2 exchanges, and could therefore be used to configure EASEE-gas AS2 exchanges. However, for ENTSOG AS4 the export the CPP structure is insufficient as it does not include agreement-related information.

4.3 Agreement Export

For ENTSOG AS4, which uses the AS4 concept of “agreements”, the configuration for a partner is to be derived from an Agreement parameter set, as described in section 3.6, along with data from referenced profiles (see section 3.2), party information (section 3.1), network and network security information (see section 3.3) and security sets (see section 3.4).

The main difference to configuration based on party profiles is that with agreements, multiple agreements can be active at the same time. Each of them relates to certificates specified in the certificate sets of the associated profiles. Furthermore, an agreement has an identifier that is included in the AS4 message as the value of an AS4 header. This allows receivers of AS4 messages to select the agreement that applies to the message, and process it accordingly.

4.4 Delegation Export

The draft CPPA3 schema has a concept called “delegation channels” that delegation information can be mapped to. This concept can be used in CPA documents in which one or both parties P1 and or P2 use at least one service provider S. The CPA XML structure then has P1 as the agreement Party and P2 as the agreement counterparty. For the party P that delegates messaging to S, there will be a channel that simply expresses that any of P’s
actions bound to send will use S as the sender or receiver. Whether that communication
uses AS2 or AS4 or other aspects of the configuration are determined by P’s configuration
for S.

The users of this delegation information are not the AS2 or AS4 messaging gateways, but
business applications or middleware applications.

- A sender party P1 can use the information to determine that an EDIG@S message to
 P2 is to be sent to S instead of P2 and therefore must use a messaging
 configuration for use with S. In this case, the messaging receiver (AS2-To in AS2 or
 To/PartyID in AS4) is different from the EDIG@S XML recipient.

- A receiver party P2 can use the information to determine that an EDIG@S message
 from S may (from a business point of view) be from a business party P1. This means
 that the messaging sender (AS2-From in AS2 or From/PartyID in AS4) identity is
 different from the EDIG@S XML recipient identity.

Alternatively, the delegation information can be exported in CSV or another tabular format
that is simpler than the CPPA3 the XML format.

4.5 Network and Network Security Export

The network and network security parameters are typically not used by the AS2 or AS4
endpoints directly. Instead, they are used in rules on the company’s firewall and configured
by the company’s network administrators, which are typically different people from the AS4
system administrators. Although the CPP and CPA formats include the relevant information,
a simpler and separate export format could be used. For example, for Linux one could
generate a shell script that invokes the `iptables` command with the relevant options, or a
simple file in CSV or another tabular format. These simpler exports could be handed over to
network management for review and deployment.

5 CPPA3 Usage Profile

The following implementation guidelines are provided:

5.1 CPP and CPA

CPPA3 defines two document types. CPP is an XML format for a party profile. CPA is a
similar format for party agreements. They have similar structures and the latter can be
formed automatically by unifying (merging) the content of two of the former.

A CPP has a ProfileIdentifier. This identifier serves the purpose of the (Sub) Profile
Identifier specified in section 3.2. Its value is not used in AS4.
A CPA has an AgreementIdentifier. This identifier is used in AS4 and has an important role in ENTSOG AS4. Its content can be derived from the agreement sequence number (see section 3.6) and the party identifiers (see section 3.2).

A CPP MAY have an allowed attribute that points to a list of party identifiers. This list can be populated from the list of counter party identifiers (see section 3.1).

CPP and CPA have ActivationDate and ExpirationDate elements set based on values defined in 3.2 and 3.6.

5.2 Party Information

The CPPA3 PartyInfo element, which provides party information, is profiled as follows:

- The PartyId value for a party MUST be to the EIC Code for the party.
- The PartyId/@type attribute MUST be set to the fixed value
 http://www.entsoe.eu/eic-codes/eic-party-codes-x.
- The PartyName MUST be set to party’s Party Name.

As an example, the following screenshot was taken from the ENTSOG approved EIC code section on ENTSOG’s Website [EIC].

The first entry on this line can therefore be represented in CPPA3 as the following PartyInfo content:

```xml
  <cppa:PartyName xml:lang="en">APX Gas NL BV</cppa:PartyName>
  <cppa:PartyId type="http://www.entsoe.eu/eic-codes/eic-party-codes-x">21X00000000010012</cppa:PartyId>
```

Certificates used for message layer signing and encryption MUST be provided as Certificate elements containing XML Signature KeyInfo elements. Within the KeyInfo, the full certificate chain MUST be provided, in order, from the leaf certificate to the issuing Certification Authority’s root certificate, as X509Certificate elements. Furthermore, a CertificateDefaults element MUST be included which MUST include a SigningCertificateRef and an EncryptionCertificateRef element, which reference a Certificate.

Note that in CPPA3, definition and use of certificates are separate. So, if a single certificate is used for both signing and encryption, only one definition must be provided, to which there are two references.
In a CPP, there is only a PartyInfo element. In a CPA, there is also a CounterPartyInfo element. It relates to the other party in the agreement. It has the same structure as the PartyInfo element.

5.3 Service Specification

All companies engaged in gas sector business can participate in one or more roles. The ENTSOG AS4 Mapping Table [AS4MAP] provides a tabular definition of all data exchanges specified in all ENTSOG Business Requirements Specification (BRS) document. Therefore, it is possible to compute the full set of potential exchanges of any gas company by selecting the exchanges in which the sending party role or the receiving party role is one of the roles the company may perform.

The following example specifies the exchanges from the company in the ZSO role, where the counterparty is a ZTZ. According to the mapping table, one of the services among these roles is the A08 role. For this service, many action bindings are to be specified. Apart from the binding for A08, other service bindings may follow. (Both further discussed after this example).

```xml
<cppa:ServiceSpecification>
  <cppa:PartyRole name="ZSO"/>
  <cppa:CounterPartyRole name="ZTZ"/>
  <cppa:ServiceBinding>
    <cppa:Service type="http://edigas.org/service">A08</cppa:Service>
    <!-- a number of action bindings, see below -->
  </cppa:ServiceBinding>
  <!-- other service binding definitions follow -->
</cppa:ServiceSpecification>
```

Within a service, separate ActionBinding elements MUST be provided for each message exchange specified in the AS4 mapping table for the pair of roles. The following example shows the content for the A08 service in the above example.

```xml
<cppa:ActionBinding sendOrReceive="send"
  action="http://docs.oasis-open.org/ebxml-msg/as4/200902/action" id="ab_1_1">
  <cppa:ChannelId>ch_send</cppa:ChannelId>
  <cppa:PayloadProfileId>pp_ALW</cppa:PayloadProfileId>
</cppa:ActionBinding>
<cppa:ActionBinding sendOrReceive="receive"
  action="http://docs.oasis-open.org/ebxml-msg/as4/200902/action" id="ab_1_3">
  <cppa:ChannelId>ch_receive</cppa:ChannelId>
  <cppa:PayloadProfileId>pp_ALU</cppa:PayloadProfileId>
</cppa:ActionBinding>
```

A party acting in a role may be either the sender or the recipient in the exchange. This is reflected in the sendOrReceive attribute value. In the example, there is one exchange from the party to the counterparty and one in the reverse direction.

In the ENTSOG AS4 profile [AS4UP], it is specified that the action is fixed to be the AS4 default action. There may be multiple bindings for this action in the service, which are only differentiated by the type of document exchanged. In a CPPA3 document there are
therefore multiple bindings for the action. In theory, multiple action bindings MAY involve
the same document. For this reason, CPPA3 does not include its payload specification as
child content of the ActionBinding element but instead has a PayloadProfileId
element whose content is an XML IDREF to a separate reusable definition. The value of the
identifier can be any XML ID, such as pp_ALW and pp_ALU in the example below.

Similarly, there is a cross-referencing ChannelId element that specifies the
communication channel to be used for the exchange (see section 5.5).

5.4 PayloadProfile

In CPPA3, payload definitions can be specified in a PayloadProfile element. This
element has a mandatory id attribute that is the target of the PayloadProfileId
element. To support protocols like AS4 that may include multiple payloads, in CPPA3 the
PayloadProfile element includes as many PayloadPart elements as are needed. For
each part, the minimum and maximum cardinality is specified using attributes. For ENTSOG
AS4, where the payload is always a single EDIGAS document, the PayloadPart element
MUST contain a single PayloadPart element in which the PartName element has the
fixed content “businessdocument”. It also MUST contain a fixed
MIMEContentType element with fixed content “application/xml” and a fixed single
Property element with fixed name “EDIGASDocumentType”, minimum and maximum
occurrence of “1” and a value attribute.

The value of the value attribute MUST be set to the EDIGAS Document Type Code
specified for the exchange in the AS4 Mapping Table.

5.5 ebMS3Channel

For document based exchange, EU regulations [CR2009/715] specify that the common
solution is AS4. Therefore, all exchanges use the AS4 protocol. To configure AS4, which is a
profile of ebMS3, CPPA3 provides the ebMS3Channel element. This element provides
configurability for all ebMS3 features using sub-elements, including reliable messaging, WS-
Security, error handling etc. However, the ENTSOG AS4 Usage Profile [AS4UP] provides fixed
values for these features.

To support usage profiles, and to obviate the need of entering predictable and repetitive
values, CPPA3 provides a Profile element, the content of which is a mutually
understood identifier of a usage profile.
These implementation guidelines require that the ChannelProfile element MUST occur and that its content MUST be set to “http://www.entsog.eu/AS4-USAGE-PROFILE/v3/UserMessageChannel”. This value is a URI identifier, which is used for identification only. It does not resolve to a page on the ENTSOG site. The identifier identifies the use of version 3 of the ENTSOG AS4 Usage Profile. Apart from this element, other child elements MUST NOT be used.

Using the transport attribute, an ebMS3Channel references a transport. For AS4, this is always an HTTPTransport. Since there are different transports for incoming and outgoing messages, a CPPA3 document MUST include two ebMS3Channel elements, one for incoming and one for outgoing messages. They have different id attribute values (so they can be referenced unambiguously) and different transport attribute values (since they reference distinct transports). Otherwise, there are no differences between the two definitions.

```xml
<cppa:ebMS3Channel id="ch_send" transport="tr_send">
  <cppa:ChannelProfile>
  </cppa:ChannelProfile>
</cppa:ebMS3Channel>

<cppa:ebMS3Channel id="ch_receive" transport="tr_receive">
  <cppa:ChannelProfile>
  </cppa:ChannelProfile>
</cppa:ebMS3Channel>
```

Note that there also exist implicit other channels, in addition to these two. AS4 errors and receipts use different channels, viz. the HTTP backchannel. These channels are considered implied by the reference of the ENTSOG AS4 Usage profile using the ChannelProfile element. For use in AS4 products these implicit channels, and the configuration of all channels, may need to be made explicit. One way of doing that is to extend the CPPA3 document by adding the implied content, under the control of the ChannelProfile value. The AS4-CPPA3 proof-of-concept [AS4CPOC] shows how this could be done in CPPA3, using an open source CPPA3 library module.

5.6 HTTPTransport

These implementation guidelines REQUIRE that each CPPA3 document has two HTTPTransport elements.

The first covers exchanges where the party specified in the PartyInfo element sends the AS4 message, and is therefore using HTTP in client capacity. In a CPP, it MUST contain a ClientIPv4 and/or ClientIPv6 child element that specifies the client IP addresses (or address ranges) from which the transport will be initiated.

The second transport covers the case where it receives the AS4 message, and is therefore using HTTP in server capacity. In a CPA, it MUST contain an Endpoint child element that
specifies the URL at which the message handler accepts incoming connections. It MAY contain ServerIPv4 and/or ServerIPv6 child elements.

In a CPA, both HTTPTransport elements contain elements from both the party and the counterparty, in either direction. They therefore MUST contain ClientIPv4 and/or ClientIPv6 children elements and an Endpoint child element.

For example, in a CPP, these two HTTPTransport elements could look as follows:

```xml
<cppa:HTTPTransport id="tr_send">
  <cppa:ClientIPv4>5.2.3.4</cppa:ClientIPv4>
</cppa:HTTPTransport>
<cppa:HTTPTransport id="tr_receive">
  <cppa:Endpoint>https://tso5.eu/as4</cppa:Endpoint>
</cppa:HTTPTransport>
```

In a corresponding CPA example, these two HTTPTransport elements could look as follows:

```xml
<cppa:HTTPTransport id="tr_send">
  <cppa:ClientIPv4>5.2.3.4</cppa:ClientIPv4>
  <cppa:Endpoint>https://tso1.eu/as4</cppa:Endpoint>
</cppa:HTTPTransport>
<cppa:HTTPTransport id="tr_receive">
  <cppa:ClientIPv4>1.2.3.4</cppa:ClientIPv4>
  <cppa:Endpoint>https://tso5.eu/as4</cppa:Endpoint>
</cppa:HTTPTransport>
```

Just as there was a lot of implicit information in an ebMS3Channel element, there is information implicit in transport definitions. An example is that TLS is to be used in version 1.2.

5.7 Delegation

In principle, CPPA3 can represent delegation information using its DelegationChannel element. A single CPP or CPA document can mix action bindings to ebMS3Channel and action bindings using DelegationChannel. However, as noted in section 4.4, simpler tabular formats may be of more practical use.
Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Editor</th>
<th>Changes Made</th>
</tr>
</thead>
<tbody>
<tr>
<td>v0r1</td>
<td>2017-09-14</td>
<td>PvdE</td>
<td>First Draft for discussion</td>
</tr>
<tr>
<td>V0r2</td>
<td>2017-10-05</td>
<td>PvdE</td>
<td>Intermediate version for internal review</td>
</tr>
<tr>
<td>V0r3</td>
<td>2017-10-10</td>
<td>PvdE, JM</td>
<td>Editorial fixes added back in</td>
</tr>
<tr>
<td>Rev_0</td>
<td>2017-12-12</td>
<td>JM</td>
<td>Created version for publication</td>
</tr>
</tbody>
</table>
7 References

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/profiles/AS4-profile/v1.0/

https://bitbucket.org/ebcore/as4_mgmt_poc

[EDIG@S] EASEE-gas EDIG@S. Version 5.1. http://www.EDIG@S.org/version-5/

[EIC] ENTSOG Approved EIC Party Codes.
https://www.entsog.eu/eic-codes/eic-party-codes-x

[INTUP] ENTSOG Interactive Profile. Current Version 0 Revision 0.

[CDEST] ENTSOG Common Data Exchange Solution Table.