ENTSOG and its Members (TSOs) invites you to a new interactive platform called Innovative Projects Platform. To efficiently build on its Members efforts to promote or contribute to innovative technologies, regulation and business models, and partnerships across the value chain, ENTSOG have initiated the identification process to map TSOs’ partnerships on Research, Development and Innovation (RDI) activities.
The result is the creation of a public platform for communication and exchange of best practices applied at national level.
These innovative solutions focus on biogas, power to gas, hydrogen, CNG and other innovative applications to support the achievement of the current EU goals of reducing GHG emissions.
Discover here how technologies can optimise the usage of the grid, make digital layer connections and support decarbonisation of the EU gas system. Technology R&D has a vital role in the energy transition. ENTSOG Members (TSOs) are developing new and innovative technologies to offer sustainable solutions for the gas sector.
Stay informed on how ENTSOG Members (TSOs) engage in development of the new energy products and services to foster uptake of renewable and decarbonised gases into the grid.
Look at new partnerships and initiatives formed by ENTSOG’s Members (TSOs). They are actively working together as well as with various stakeholders on projects aimed at decarbonisation of the gas sector and of the whole EU economy.
Hydrogen can be produced from diverse process technologies. Hydrogen can be produced via steam methane reforming and blended with natural gas to be transported via existing grid infrastructure and contribute towards decarbonisation.
Technological innovation is important for the transition to low carbon economy and combating climate change. New technologies such as power-to gas, biomethane, hydrogen, CNG will enable this transition.
Biogas is obtained via the anaerobic decomposition of the organic matter. After the process of upgrading, biogas becomes biomethane with the same quality standard as natural gas and can be transported via the existing grid infrastructure.
Carbon Capture and storage is the process of capturing waste CO2 from large point sources, such as fossil fuel power plants, transporting it to a storage site, and depositing it where it will not enter the atmosphere. The aim is to prevent the release of large quantities of CO2 into the atmosphere.
Power-to-gas is the conversion of electrical power into a gaseous energy carrier like e.g. hydrogen or methane. This technological concept is considered to be an important tool in the energy transition.
Compressed Natural Gas (CNG) is a fuel source that is made from compressing natural gas to less than 1% of its standard atmospheric volume. CNG combustion produces fewer undesirable gases than other fossil fuels.
Digitalisation can bring various benefits to day-to-day operations such as enhanced control over the gas quality and cost reductions. TSOs look at data-driven solutions to boost performance, efficiency and competitiveness.
Cutting the energy consumption in heating and cooling in buildings and industry can be achieved through various technologies. TSOs are working on developing cost-efficient solutions for the decarbonisation of this sector.
To ensure the cross-border scale up and tradability of renewable, decarbonised and low-carbon gases. This can be achieved via pan European Guarantees of Origin and Certification Schemes.
Hydrogen is produced by a 35 MW electrolyser, which is directly connected to a wind farm. The pure hydrogen is stored in a nearby salt cavern. The transport between the underground storage and the end users for the hydrogen inside an existing industrial area is provided by a converted natural gas pipeline.
Contact: Eric.Tamaske@ontras.com
Snam has launched its experiment of introducing a 5% hydrogen and natural gas blend into the Italian gas transmission network. The experiment, the first of its kind in Europe, is being conducted in Contursi Terme, and involves the supply of H2NG (a blend of hydrogen and gas) to two industrial companies in the area: a pasta factory and a mineral water bottling company.
Contact: dina.lanzi@snam.it
Nuon / Vattenfall, Gasunie New Energy and the Norwegian energy company Equinor are working together on the conversion of the Magnum power station in Eemshaven. It is planned that the first three units of the power plant that are currently still powered by natural gas will be converted to run on hydrogen between 2023-2025. The Magnum power plant will deliver 440 megawatts per unit.
Contact: k.g.wiersma@gasunie.nl
A project promoted by the Regional and National Government and some private companies: Cemex, Enagás, Acciona and Redexis. The 10 MW green hydrogen production plant will be powered by a 16 MW solar plant. The project contemplates the use of green hydrogen in mobility, as well as its injection into the gas grid.
Contact: mjaen@enagas.es
The strategic goal of Get H2 is to combine regions with a high share of renewable energies from wind and solar sources with H2 production on an industrial scale. The focus is on the development of a nationwide H2 infrastructure with the coupling of all sectors.
Contact: presse@nowega.de
The aim of the HESTOR research and development project carried out by a scientific and industrial consortium was to investigate the possibility of hydrogen storage in salt caverns, generated from RES, and its further use for energy generation and technological purposes in oil & refinery industry. The Project also considered technical and economic aspects of the use of hydrogen as a fuel in transport. Read more about the other issues addressed in the document using the link below.
Contact: dorota.polak@gaz-system.pl
ENTSOG and its TSO members are engaging in partnership organisations to assess and create awareness about the role of renewable and low carbon gas in the future energy system.
Amprion and Open Grid Europe (OGE) are joining forces to press ahead with intelligent sector coupling. The two companies are planning to trial the power-to-gas (PtG) technology on an industrial scale to help accelerate the energy transition. The aim is to build PtG plants in the 50 to 100 MW range. Potential sites in Lower Saxony and northern North Rhine-Westphalia have been identified.
Contact: karsten.frese@open-grid-europe.com,
jan.teuwsen@amprion.net
TenneT and Gasunie published their first Infrastructure Outlook 2050, which is the result of a joint study on the development of an integrated energy infrastructure in the Netherlands and Germany. It takes the target of the Paris Agreement (COP21) as a starting point. This Infrastructure Outlook describes the consequences of for the existing gas and electricity transport infrastructures in three scenarios. This Outlook 2050 represents a solid, joint start with fresh new insights and shows the requirements and the restrictions for the infrastructure relating to a future CO2-neutral energy system.
Contact: P.Nienhuis@gastransport.nl
TenneT Netherlands, TenneT Germany, Energinet, Gasunie and Port of Rotterdam joined to build an artificial island in the North Sea to host synergy technologies such as Power2Gas. The hub provides a basis for a joint European approach up to 2050 and focuses specifically on developing the North Sea as a source and a distribution centre for Europe’s energy transition.
Contact: til@energinet.dk